
Stat 217, Spring 2023 Jiaze Qiu (jiazeqiu@g.harvard.edu)

Section 9: Detection v.s. Recovery a

• Sections: Wed, 7:30-8:30pm (SC 705); OHs: Wed 8:30-9:30pm (SC 316.07).

• All the section materials (handouts & solutions) can be found either on Canvas or here.
aThis handout is based on [9].

Definition 1. Let distributions Pn, Qn be defined on the measurable space (Ωn,Fn). We say that the sequence
Qn is contiguous to Pn, and write Qn ◁ Pn, if for any sequence An of events,

lim
n→∞

Pn (An) = 0 =⇒ lim
n→∞

Qn (An) = 0.

Lemma 1. If Qn ◁ Pn, then there is no hypothesis test of the alternative Qn against the null Pn with
Pr[type I error] + Pr[type II error] = o(1).

Note that Qn ◁ Pn and Pn ◁ Qn are not equivalent, but either of them implies non-distinguishability.
Our goal today is to show thresholds below which spiked and unspiked random matrix models are con-

tiguous.

Lemma 2. Let {Pn} and {Qn} be two sequences of distributions on (Ωn,Fn). If the second moment

E
Pn

[(
dQn

dPn

)2
]

exists and remains bounded as n → ∞, then Qn ◁ Pn.

1. Prove this lemma.

Solution: Let {An} be a sequence of events. Using Cauchy-Schwarz,

Qn (An) =

∫
An

dQn

dPn
dPn ≤

√∫
An

(
dQn

dPn

)2

dPn ·

√∫
An

dPn.

The first factor on the right-hand side is bounded; so if Pn (An) → 0 then also Qn (An) → 0

Solution: Moreover, given a value of the second moment, we are able to obtain bounds on the
tradeoff between type I and type II error in hypothesis testing, which are valid nonasymptotically.
Note that this implies, showing that two (sequences of) distributions are contiguous does not rule
out the existence of a test that distinguishes between them with constant error probability (better
than random guessing).
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Lemma 3. Consider a hypothesis test of a simple alternative Q against a simple null P . Let α be the
probability of type I error, and β the probability of type II error. Regardless of the test, we must have

(1− β)2

α
+

β2

(1− α)
≤ E

P

(
dQ

dP

)2

,

assuming the right-hand side is defined and finite. Furthermore, this bound is tight: for any α, β ∈ (0, 1)
there exist P,Q and a test for which equality holds.

2. Prove the lemma above and discuss the difference between Lemma 2 and Lemma 3.

Solution: Let A be the event that the test selects the alternative Q, and let Ā be its complement.

E
P

(
dQ

dP

)2

=

∫
dQ

dP
dQ =

∫
A

dQ

dP
dQ+

∫
Ā

dQ

dP
dQ

≥
(∫

A
dQ

)2∫
A
( dP/dQ)dQ

+

(∫
Ā

dQ
)2∫

Ā
( dP/dQ)dQ

=
(1− β)2

α
+

β2

(1− α)
,

where the inequality follows from Cauchy-Schwarz. The following example shows tightness: let
P = Bernoulli(α) and let Q = Bernoulli(1 − β). On input 0 , the test chooses P , and on input 1 ,
it chooses Q.

Definition 2 (Gaussian Wigner Spiked Matrix Model). We observe Y = λxx+ 1√
n
W , where W is an

n × n random symmetric matrix with entries drawn iid (up to symmetry) from a fixed distribution of
mean 0 and variance 1.

Question 1. Can we “detect” whether there is a spike or not?

3. Try to formalize the question above. Is there a difference between “detection” and “recovery”?

Solution:

We will adopt a Bayesian point of view from now on. Namely, we assume a priori x ∼ X , where X = Xn

is a sequence of distributions on Rn, with the default example being N (0, In/n). It is understood that
∥x∥ ≈ 1. We use GWign(λ,X ) to denote the corresponding distribution of Y .

Lemma 4. Let λ ≥ 0. Let Qn = GWign(λ,X ) and Pn = GWign(0). Let x and x′ be independently
drawn from Xn. Then

E
Pn

(
dQn

dPn

)2

= E
x,x′

exp

(
nλ2

2
⟨x, x′⟩2

)
4. Prove Lemma 4.
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Solution: Let Qn = GWign(λ,X ), i.e., the spiked distribution, and Pn = GWign(0), i.e., the
unspiked distribution. First, we simplify the likelihood ratio:

dQn

dPn
=

Ex∼Xn
exp

(
−n

4

〈
Y − λxx⊤, Y − λxx⊤〉)

exp
(
−n

4 ⟨Y, Y ⟩
)

= E
x∼Xn

exp

(
λn

2

〈
Y, xx⊤〉− nλ2

4

〈
xx⊤, xx⊤〉) .

Now passing to the second moment:

E
Pn

(
dQn

dPn

)2

= E
x,x′∼Xn

E
∼Pn

exp

(
λn

2

〈
Y, xx⊤ + x′x′⊤〉

−nλ2

4

(〈
xx⊤, xx⊤〉+ 〈

x′x′⊤, x′x′⊤〉))
where x and x′ are drawn independently from Xn. We now simplify the Gaussian moment-generating
function over the randomness of Y , and cancel terms, to arrive at the expression

= E
x,x′

exp

(
nλ2

2
⟨x, x′⟩2

)
,

which proves Lemma 4.

It is well known that our spiked Wigner model admits the following spectral behavior.

Theorem 1. Let Y be drawn from GWig(λ,X ) with any spike prior X supported on unit vectors (∥x∥ =
1):

• If λ ≤ 1, the top eigenvalue of Y converges almost surely to 2 as n → ∞, and the top (unit-norm)
eigenvector v has trivial correlation with the spike: ⟨v, x⟩2 → 0 almost surely.

• If λ > 1, the top eigenvalue converges almost surely to λ + 1/λ > 2, and v estimates the spike
nontrivially: ⟨v, x⟩2 → 1− 1/λ2 almost surely.

5. Prove that for λ < 1 “detection” is impossible, assuming xi
iid∼ N (0, 1/n).

Solution: Please see [9][Prop. 3.8.]

6. Compare this result to Theorem 1. Do the thresholds for detection adn recovery match? What about
more general noise distributions and more general priors on x?
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Solution: First of all, roughly speaking, the spectral behavior of this model exhibits universality:
regardless of the choice of the noise distributions, many properties of the spectrum behave the same
as if the noise came from a standard Gaussian distribution. In particular, for λ ≤ 1, the spectrum
bulk has a semicircular distribution and the maximum eigenvalue converges almost surely to 2. For
λ > 1, an isolated eigenvalue emerges from the bulk with value converging to λ + 1/λ, and (under
suitable assumptions) the top eigenvector has squared correlation 1− 1/λ2 with the truth. In stark
contrast, from a statistical standpoint, universality breaks down entirely: the detection problem
becomes easier when the noise is non-Gaussian. Equivalently, the detection threshold is actually
lower than 1 in the non-Guassian case, or in other words, Gaussian noise is the hardest! See [9] for
more details.
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