Stat 217, Spring 2023 Jiaze Qiu (jiazeqiu@g.harvard.edu)
Section 9: Detection v.s. Recovery [
e Sections: Wed, 7:30-8:30pm (SC 705); OHs: Wed 8:30-9:30pm (SC 316.07).

o All the section materials (handouts & solutions) can be found either on Canvas or here.

%This handout is based on [9].

Definition 1. Let distributions P, Q,, be defined on the measurable space (L, F,). We say that the sequence
Q. is contiguous to Py, and write Q,, <4 P,, if for any sequence A,, of events,

lim P,(A4,)=0 = lim Q,(4,)=0.
n—oo

n—oo

Lemma 1. If Q, < P,, then there is no hypothesis test of the alternative Q,, against the null P, with
Pr[type I error] + Pr[type II error] = o(1).

Note that @, < P, and P, <@, are not equivalent, but either of them implies non-distinguishability.
Our goal today is to show thresholds below which spiked and unspiked random matrix models are con-
tiguous.

Lemma 2. Let {P,} and {Q,} be two sequences of distributions on (0, Fy). If the second moment

dQ,\*
(&)

erists and remains bounded as n — oo, then Q, 4 P,.

P

1. Prove this lemma.

Solution: Let {A,} be a sequence of events. Using Cauchy-Schwarz,

Qi = [ Dear< [ (%) an [ ar

The first factor on the right-hand side is bounded; so if P, (4,) — 0 then also Q,, (4,) — 0

Solution: Moreover, given a value of the second moment, we are able to obtain bounds on the
tradeoff between type I and type II error in hypothesis testing, which are valid nonasymptotically.
Note that this implies, showing that two (sequences of) distributions are contiguous does not rule
out the existence of a test that distinguishes between them with constant error probability (better
than random guessing).
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Lemma 3. Consider a hypothesis test of a simple alternative QQ against a simple null P. Let o be the
probability of type I error, and B the probability of type II error. Regardless of the test, we must have

(1-p2 B aQ \?
o +(1_O¢)<5@<dp>’

assuming the right-hand side is defined and finite. Furthermore, this bound is tight: for any «, 8 € (0,1)
there exist P,Q and a test for which equality holds.

2. Prove the lemma above and discuss the difference between Lemma 2 and Lemma 3.

Solution: Let A be the event that the test selects the alternative @, and let A be its complement.

dQ\*  [dQ .. [ dQ dQ
E@<dp> = @dQ—/A@dQ* ap 4@
(L, d@° | (4 dQ° _a-p p

S T(dP/AQAQ T T(dP/AQ)AQ T o  (i-a)

where the inequality follows from Cauchy-Schwarz. The following example shows tightness: let
P = Bernoulli(a) and let @ = Bernoulli(1 — ). On input 0 , the test chooses P, and on input 1 ,
it chooses Q.

Definition 2 (Gaussian Wigner Spiked Matrix Model). We observe Y = Azx + ﬁw, where W is an

n x n random symmetric matriz with entries drawn #d (up to symmetry) from a fived distribution of
mean 0 and variance 1.

Question 1. Can we “detect” whether there is a spike or not?

3. Try to formalize the question above. Is there a difference between “detection” and “recovery’?

Solution:

We will adopt a Bayesian point of view from now on. Namely, we assume a priori z ~ X, where X = X,
is a sequence of distributions on R™, with the default example being N (0, I,,/n). It is understood that
lz]] = 1. We use GWig,, (A, X') to denote the corresponding distribution of Y.

Lemma 4. Let A > 0. Let Q, = GWig, (A, X) and P, = GWig, (0). Let x and x’ be independently

drawn from X,,. Then
dQ. \? A2, o
E,(dPn) —w%exp(zmx)

4. Prove Lemma 4.
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Solution: Let @, = GWig, (), X), i.e., the spiked distribution, and P, = GWig, (0), i.e., the
unspiked distribution. First, we simplify the likelihood ratio:

dQ, Es.x, exp (—% <Y —dzz")Y — /\x;tT>)

dp, exp (—2(Y,Y))

2
= E exp <)\2n<Y,xccT>—ni<x:cT,xxT>>.

x~Xy,

Now passing to the second moment:

dQ, \?
]E( QL) = E E exp()\2n<Y,a:xT+x’x’T>

p, \ dP, 2,2 ~ Xy~ Py

2
_% (<I$T,sz> + <1‘/I,T,CC/13/T>)>

where z and z’ are drawn independently from X,,. We now simplify the Gaussian moment-generating
function over the randomness of Y, and cancel terms, to arrive at the expression

which proves Lemma 4.

It is well known that our spiked Wigner model admits the following spectral behavior.

Theorem 1. Let Y be drawn from GWig(\, X) with any spike prior X supported on unit vectors (||x| =

1):

o If A <1, the top eigenvalue of Y converges almost surely to 2 as n — oo, and the top (unit-norm)
eigenvector v has trivial correlation with the spike: (v,x)? — 0 almost surely.

o If A > 1, the top eigenvalue converges almost surely to A+ 1/X > 2, and v estimates the spike
nontrivially: (v,z)?> — 1 —1/A? almost surely.

. Prove that for A < 1 “detection” is impossible, assuming x; g N(0,1/n).

Solution: Please see [9][Prop. 3.8.]

. Compare this result to Theorem 1. Do the thresholds for detection adn recovery match? What about
more general noise distributions and more general priors on z?
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Solution: First of all, roughly speaking, the spectral behavior of this model exhibits universality:
regardless of the choice of the noise distributions, many properties of the spectrum behave the same
as if the noise came from a standard Gaussian distribution. In particular, for A < 1, the spectrum
bulk has a semicircular distribution and the maximum eigenvalue converges almost surely to 2. For
A > 1, an isolated eigenvalue emerges from the bulk with value converging to A + 1/, and (under
suitable assumptions) the top eigenvector has squared correlation 1 — 1/\? with the truth. In stark
contrast, from a statistical standpoint, universality breaks down entirely: the detection problem
becomes easier when the noise is non-Gaussian. Equivalently, the detection threshold is actually
lower than 1 in the non-Guassian case, or in other words, Gaussian noise is the hardest! See [9] for
more details.
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