Section 9: Detection v.s. Recovery ${ }^{a}$

- Sections: Wed, 7:30-8:30pm (SC 705); OHs: Wed 8:30-9:30pm (SC 316.07).
- All the section materials (handouts \& solutions) can be found either on Canvas or here.
${ }^{a}$ This handout is based on 9.

Definition 1. Let distributions P_{n}, Q_{n} be defined on the measurable space $\left(\Omega_{n}, \mathcal{F}_{n}\right)$. We say that the sequence Q_{n} is contiguous to P_{n}, and write $Q_{n} \triangleleft P_{n}$, if for any sequence A_{n} of events,

$$
\lim _{n \rightarrow \infty} P_{n}\left(A_{n}\right)=0 \quad \Longrightarrow \quad \lim _{n \rightarrow \infty} Q_{n}\left(A_{n}\right)=0
$$

Lemma 1. If $Q_{n} \triangleleft P_{n}$, then there is no hypothesis test of the alternative Q_{n} against the null P_{n} with $\operatorname{Pr}[$ type I error $]+\operatorname{Pr}[$ type II error $]=o(1)$.

Note that $Q_{n} \triangleleft P_{n}$ and $P_{n} \triangleleft Q_{n}$ are not equivalent, but either of them implies non-distinguishability.
Our goal today is to show thresholds below which spiked and unspiked random matrix models are contiguous.

Lemma 2. Let $\left\{P_{n}\right\}$ and $\left\{Q_{n}\right\}$ be two sequences of distributions on $\left(\Omega_{n}, \mathcal{F}_{n}\right)$. If the second moment

$$
\underset{P_{n}}{\mathbb{E}}\left[\left(\frac{\mathrm{~d} Q_{n}}{\mathrm{~d} P_{n}}\right)^{2}\right]
$$

exists and remains bounded as $n \rightarrow \infty$, then $Q_{n} \triangleleft P_{n}$.

1. Prove this lemma.

Solution: Let $\left\{A_{n}\right\}$ be a sequence of events. Using Cauchy-Schwarz,

$$
Q_{n}\left(A_{n}\right)=\int_{A_{n}} \frac{\mathrm{~d} Q_{n}}{\mathrm{~d} P_{n}} \mathrm{~d} P_{n} \leq \sqrt{\int_{A_{n}}\left(\frac{\mathrm{~d} Q_{n}}{\mathrm{~d} P_{n}}\right)^{2} \mathrm{~d} P_{n}} \cdot \sqrt{\int_{A_{n}} \mathrm{~d} P_{n}} .
$$

The first factor on the right-hand side is bounded; so if $P_{n}\left(A_{n}\right) \rightarrow 0$ then also $Q_{n}\left(A_{n}\right) \rightarrow 0$

Solution: Moreover, given a value of the second moment, we are able to obtain bounds on the tradeoff between type I and type II error in hypothesis testing, which are valid nonasymptotically. Note that this implies, showing that two (sequences of) distributions are contiguous does not rule out the existence of a test that distinguishes between them with constant error probability (better than random guessing).

Lemma 3. Consider a hypothesis test of a simple alternative Q against a simple null P. Let α be the probability of type I error, and β the probability of type II error. Regardless of the test, we must have

$$
\frac{(1-\beta)^{2}}{\alpha}+\frac{\beta^{2}}{(1-\alpha)} \leq \underset{P}{\mathbb{E}}\left(\frac{\mathrm{~d} Q}{\mathrm{~d} P}\right)^{2}
$$

assuming the right-hand side is defined and finite. Furthermore, this bound is tight: for any $\alpha, \beta \in(0,1)$ there exist P, Q and a test for which equality holds.
2. Prove the lemma above and discuss the difference between Lemma 2 and Lemma 3.

Solution: Let A be the event that the test selects the alternative Q, and let \bar{A} be its complement.

$$
\begin{aligned}
\underset{P}{\mathbb{E}}\left(\frac{\mathrm{~d} Q}{\mathrm{~d} P}\right)^{2} & =\int \frac{\mathrm{d} Q}{\mathrm{~d} P} \mathrm{~d} Q=\int_{A} \frac{\mathrm{~d} Q}{\mathrm{~d} P} \mathrm{~d} Q+\int_{\bar{A}} \frac{\mathrm{~d} Q}{\mathrm{~d} P} \mathrm{~d} Q \\
& \geq \frac{\left(\int_{A} \mathrm{~d} Q\right)^{2}}{\int_{A}(\mathrm{~d} P / \mathrm{d} Q) \mathrm{d} Q}+\frac{\left(\int_{\bar{A}} \mathrm{~d} Q\right)^{2}}{\int_{\bar{A}}(\mathrm{~d} P / \mathrm{d} Q) \mathrm{d} Q}=\frac{(1-\beta)^{2}}{\alpha}+\frac{\beta^{2}}{(1-\alpha)}
\end{aligned}
$$

where the inequality follows from Cauchy-Schwarz. The following example shows tightness: let $P=\operatorname{Bernoulli}(\alpha)$ and let $Q=\operatorname{Bernoulli}(1-\beta)$. On input 0 , the test chooses P, and on input 1 , it chooses Q.

Definition 2 (Gaussian Wigner Spiked Matrix Model). We observe $Y=\lambda x x+\frac{1}{\sqrt{n}} W$, where W is an $n \times n$ random symmetric matrix with entries drawn iid (up to symmetry) from a fixed distribution of mean 0 and variance 1 .

Question 1. Can we "detect" whether there is a spike or not?
3. Try to formalize the question above. Is there a difference between "detection" and "recovery"?

Solution:

We will adopt a Bayesian point of view from now on. Namely, we assume a priori $x \sim \mathcal{X}$, where $\mathcal{X}=\mathcal{X}_{n}$ is a sequence of distributions on \mathbb{R}^{n}, with the default example being $\mathcal{N}\left(0, I_{n} / n\right)$. It is understood that $\|x\| \approx 1$. We use $\operatorname{GWig}_{n}(\lambda, \mathcal{X})$ to denote the corresponding distribution of Y.

Lemma 4. Let $\lambda \geq 0$. Let $Q_{n}=\operatorname{GWig}_{n}(\lambda, \mathcal{X})$ and $P_{n}=\operatorname{GWig}_{n}(0)$. Let x and x^{\prime} be independently drawn from \mathcal{X}_{n}. Then

$$
\underset{P_{n}}{\mathbb{E}}\left(\frac{\mathrm{~d} Q_{n}}{\mathrm{~d} P_{n}}\right)^{2}=\underset{x, x^{\prime}}{\mathbb{E}} \exp \left(\frac{n \lambda^{2}}{2}\left\langle x, x^{\prime}\right\rangle^{2}\right)
$$

4. Prove Lemma 4.

Solution: Let $Q_{n}=\operatorname{GWig}_{n}(\lambda, \mathcal{X})$, i.e., the spiked distribution, and $P_{n}=\operatorname{GWig}_{n}(0)$, i.e., the unspiked distribution. First, we simplify the likelihood ratio:

$$
\begin{aligned}
\frac{\mathrm{d} Q_{n}}{\mathrm{~d} P_{n}} & =\frac{\mathbb{E}_{x \sim \mathcal{X}_{n}} \exp \left(-\frac{n}{4}\left\langle Y-\lambda x x^{\top}, Y-\lambda x x^{\top}\right\rangle\right)}{\exp \left(-\frac{n}{4}\langle Y, Y\rangle\right)} \\
& =\underset{x \sim \mathcal{X}_{n}}{\mathbb{E}} \exp \left(\frac{\lambda n}{2}\left\langle Y, x x^{\top}\right\rangle-\frac{n \lambda^{2}}{4}\left\langle x x^{\top}, x x^{\top}\right\rangle\right)
\end{aligned}
$$

Now passing to the second moment:

$$
\begin{aligned}
\underset{P_{n}}{\mathbb{E}}\left(\frac{\mathrm{~d} Q_{n}}{\mathrm{~d} P_{n}}\right)^{2}= & \underset{x, x^{\prime} \sim \mathcal{X}_{n} \sim P_{n}}{\mathbb{E}} \underset{\operatorname{E}}{\mathbb{E}} \exp \left(\frac{\lambda n}{2}\left\langle Y, x x^{\top}+x^{\prime} x^{\prime \top}\right\rangle\right. \\
& \left.-\frac{n \lambda^{2}}{4}\left(\left\langle x x^{\top}, x x^{\top}\right\rangle+\left\langle x^{\prime} x^{\prime \top}, x^{\prime} x^{\prime \top}\right\rangle\right)\right)
\end{aligned}
$$

where x and x^{\prime} are drawn independently from \mathcal{X}_{n}. We now simplify the Gaussian moment-generating function over the randomness of Y, and cancel terms, to arrive at the expression

$$
=\underset{x, x^{\prime}}{\mathbb{E}} \exp \left(\frac{n \lambda^{2}}{2}\left\langle x, x^{\prime}\right\rangle^{2}\right)
$$

which proves Lemma 4.

It is well known that our spiked Wigner model admits the following spectral behavior.
Theorem 1. Let Y be drawn from $\operatorname{GWig}(\lambda, \mathcal{X})$ with any spike prior \mathcal{X} supported on unit vectors $(\|x\|=$ 1):

- If $\lambda \leq 1$, the top eigenvalue of Y converges almost surely to 2 as $n \rightarrow \infty$, and the top (unit-norm) eigenvector v has trivial correlation with the spike: $\langle v, x\rangle^{2} \rightarrow 0$ almost surely.
- If $\lambda>1$, the top eigenvalue converges almost surely to $\lambda+1 / \lambda>2$, and v estimates the spike nontrivially: $\langle v, x\rangle^{2} \rightarrow 1-1 / \lambda^{2}$ almost surely.

5. Prove that for $\lambda<1$ "detection" is impossible, assuming $x_{i} \stackrel{i i d}{\sim} \mathcal{N}(0,1 / n)$.

Solution: Please see [9][Prop. 3.8.]
6. Compare this result to Theorem 1. Do the thresholds for detection adn recovery match? What about more general noise distributions and more general priors on x ?

Solution: First of all, roughly speaking, the spectral behavior of this model exhibits universality: regardless of the choice of the noise distributions, many properties of the spectrum behave the same as if the noise came from a standard Gaussian distribution. In particular, for $\lambda \leq 1$, the spectrum bulk has a semicircular distribution and the maximum eigenvalue converges almost surely to 2 . For $\lambda>1$, an isolated eigenvalue emerges from the bulk with value converging to $\lambda+1 / \lambda$, and (under suitable assumptions) the top eigenvector has squared correlation $1-1 / \lambda^{2}$ with the truth. In stark contrast, from a statistical standpoint, universality breaks down entirely: the detection problem becomes easier when the noise is non-Gaussian. Equivalently, the detection threshold is actually lower than 1 in the non-Guassian case, or in other words, Gaussian noise is the hardest! See 9 for more details.

References

[1] Bayati, M., and Montanari, A. The dynamics of message passing on dense graphs, with applications to compressed sensing. IEEE Transactions on Information Theory 57, 2 (2011), 764-785.
[2] Bolthausen, E. An iterative construction of solutions of the tap equations for the sherringtonkirkpatrick model. Communications in Mathematical Physics 325, 1 (2014), 333-366.
[3] Chatterjee, S. A simple invariance theorem. arXiv preprint math/0508213 (2005).
[4] Feng, O. Y., Venkataramanan, R., Rush, C., and Samworth, R. J. A unifying tutorial on approximate message passing. Foundations and Trends in Machine Learning 15, 4 (2022), 335-536.
[5] Fox, C. W., and Roberts, S. J. A tutorial on variational bayesian inference. Artificial intelligence review 38 (2012), 85-95.
[6] Guerra, F., and Toninelli, F. L. The thermodynamic limit in mean field spin glass models. Communications in Mathematical Physics 230 (2002), 71-79.
[7] Montanari, A., and Sen, S. A short tutorial on mean-field spin glass techniques for non-physicists. arXiv preprint arXiv:2204.02909 (2022).
[8] Panchenko, D. The sherrington-kirkpatrick model. Springer Science \& Business Media, 2013.
[9] Perry, A., Wein, A. S., Bandeira, A. S., and Moitra, A. Optimality and sub-optimality of pca for spiked random matrices and synchronization. arXiv preprint arXiv:1609.05573 (2016).
[10] Talagrand, M. The generalized parisi formula. Comptes Rendus Mathematique 337, 2 (2003), 111114.

