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Section 9: Detection v.s. Recovery a

• Sections: Wed, 7:30-8:30pm (SC 705); OHs: Wed 8:30-9:30pm (SC 316.07).

• All the section materials (handouts & solutions) can be found either on Canvas or here.
aThis handout is based on [9].

Definition 1. Let distributions Pn, Qn be defined on the measurable space (Ωn,Fn). We say that the sequence
Qn is contiguous to Pn, and write Qn ◁ Pn, if for any sequence An of events,

lim
n→∞

Pn (An) = 0 =⇒ lim
n→∞

Qn (An) = 0.

Lemma 1. If Qn ◁ Pn, then there is no hypothesis test of the alternative Qn against the null Pn with
Pr[type I error] + Pr[type II error] = o(1).

Note that Qn ◁ Pn and Pn ◁ Qn are not equivalent, but either of them implies non-distinguishability.
Our goal today is to show thresholds below which spiked and unspiked random matrix models are con-

tiguous.

Lemma 2. Let {Pn} and {Qn} be two sequences of distributions on (Ωn,Fn). If the second moment

E
Pn

[(
dQn

dPn

)2
]

exists and remains bounded as n → ∞, then Qn ◁ Pn.

1. Prove this lemma.

Lemma 3. Consider a hypothesis test of a simple alternative Q against a simple null P . Let α be the
probability of type I error, and β the probability of type II error. Regardless of the test, we must have

(1− β)2

α
+

β2

(1− α)
≤ E

P

(
dQ

dP

)2

,

assuming the right-hand side is defined and finite. Furthermore, this bound is tight: for any α, β ∈ (0, 1)
there exist P,Q and a test for which equality holds.
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2. Prove the lemma above and discuss the difference between Lemma 2 and Lemma 3.

Definition 2 (Gaussian Wigner Spiked Matrix Model). We observe Y = λxx+ 1√
n
W , where W is an

n × n random symmetric matrix with entries drawn iid (up to symmetry) from a fixed distribution of
mean 0 and variance 1.

Question 1. Can we “detect” whether there is a spike or not?

3. Try to formalize the question above. Is there a difference between “detection” and “recovery”?

We will adopt a Bayesian point of view from now on. Namely, we assume a priori x ∼ X , where X = Xn

is a sequence of distributions on Rn, with the default example being N (0, In/n). It is understood that
∥x∥ ≈ 1.

Lemma 4. Let λ ≥ 0. Let Qn = GWign(λ,X ) and Pn = GWign(0). Let x and x′ be independently
drawn from Xn. Then

E
Pn

(
dQn

dPn

)2

= E
x,x′

exp

(
nλ2

2
⟨x, x′⟩2

)
4. Prove Lemma 4.
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It is well known that our spiked Wigner model admits the following spectral behavior.

Theorem 1. Let Y be drawn from GWig(λ,X ) with any spike prior X supported on unit vectors (∥x∥ =
1):

• If λ ≤ 1, the top eigenvalue of Y converges almost surely to 2 as n → ∞, and the top (unit-norm)
eigenvector v has trivial correlation with the spike: ⟨v, x⟩2 → 0 almost surely.

• If λ > 1, the top eigenvalue converges almost surely to λ + 1/λ > 2, and v estimates the spike
nontrivially: ⟨v, x⟩2 → 1− 1/λ2 almost surely.

5. Prove that for λ < 1 “detection” is impossible, assuming xi
iid∼ N (0, 1/n).

6. Compare this result to Theorem 1. Do the thresholds for detection adn recovery match? What about
more general noise distributions and more general priors on x?
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